Functional
interface Mu extends Profunctor.Mu {}
filter
profunctors
μ
filter
filter
flatmap
filter
filter
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
μ
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
functors
>>==
public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>
std::reduce(std::execution::seq, v.cbegin(), v.cend())
filter
Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int
(+ 1 1)
public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>
profunctors
μ
functors
flatmap
flatmap
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
filter
flatmap
filter
category theory
functors
filter
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
map
profunctors
filter
The λ-cube sees all
std::reduce(std::execution::seq, v.cbegin(), v.cend())
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
filter
>>==
flatmap
filter
flatmap
profunctors
functors
profunctors
default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()
μ