Functional

interface Mu extends Profunctor.Mu {}

filter

profunctors

μ

filter

filter

flatmap

filter

filter

public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)

μ

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

functors

>>==

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

std::reduce(std::execution::seq, v.cbegin(), v.cend())

filter

Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int -> Int

(+ 1 1)

public interface Applicative<F extends K1, Mu extends Applicative.Mu> extends Functor<F, Mu>

profunctors

μ

functors

flatmap

flatmap

forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))

filter

flatmap

filter

category theory

functors

filter

forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))

map

profunctors

filter

The λ-cube sees all

std::reduce(std::execution::seq, v.cbegin(), v.cend())

upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }

filter

>>==

flatmap

filter

flatmap

profunctors

functors

profunctors

default Function15<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Function<T16, R>> curry15()

μ