Functional
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
A monad is a monoid in the category of endofunctors.
map
>>==
flatmap
map
>>==
μ
forall void a n m. MonadEffect n => MonadAff m => MonadEffect m => Plus m => m a -> n (Tuple (m a) (m void))
functors
Natural Transformations
profunctors
() -> a -> b -> (c, d, e) -> f -> a(b)(c)[d](e, f)
λ
A monad is a monoid in the category of endofunctors.
profunctors
λ
map
category theory
map
filter
flatmap
interface Mu extends Profunctor.Mu {}
flatmap
flatmap
>>==
map
upgrades.flatMapIndexed { idx, entry -> entry.map { Pair(it.key.position.add(-2.0*idx, 0.0, 0.0), Pair(it.value, it.value.data)) } }
filter
filter
map
map
μ
Natural Transformations
flatmap
filter
Category Theory
map
flatmap
A monad is a monoid in the category of endofunctors.
map
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)
list.map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…)
(+ 1 1)
filter
filter
collection.filter(…).map(…).flatMap(…).filter(…).map(…).filter(…).forEach(…)
list.map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…).map(…)
filter
public <A, B, C, D> FunctionType<App2<Grate.Mu<A2, B2>, A, B>, App2<Grate.Mu<A2, B2>, C, D>> dimap(final Function<C, A> g, final Function<B, D> h)